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We establish that the static height fluctuations of a particular growth model, the
PNG droplet, converges upon proper rescaling to a limit process, which we call
the Airy process A(y). The Airy process is stationary, it has continuous sample
paths, its single ‘‘time’’ (fixed y) distribution is the Tracy–Widom distribution
of the largest eigenvalue of a GUE random matrix, and the Airy process has a
slow decay of correlations as y−2. Roughly the Airy process describes the last
line of Dyson’s Brownian motion model for random matrices. Our construction
uses a multi-layer version of the PNG model, which can be analyzed through
fermionic techniques. Specializing our result to a fixed value of y, one reobtains
the celebrated result of Baik, Deift, and Johansson on the length of the longest
increasing subsequence of a random permutation.

KEY WORDS: Airy process; PNG model; longest increasing subsequences; free
fermion techniques.

1. THE PNG DROPLET

The polynuclear growth (PNG) model is a simplified model for layer by
layer growth. (1, 2) Initially one has a perfectly flat crystal in contact with its
supersaturated vapor. Once in a while a supercritical seed is formed, which
then spreads laterally by further attachment of particles at its perimeter
sites. Such islands coalesce if they are in the same layer and further islands
may be nucleated upon already existing ones. The PNG model ignores the
lateral lattice structure and assumes that the islands are circular and spread
at constant speed.



In this paper we study the one-dimensional version in the particular
geometry where nucleation only above the ground layer [−t, t] is allowed.
To be precise: at time t the height is given by the (random) function h(x, t),
x ¥ R. One requires h(x, t)=0 for |x| > t, in particular h(x, 0)=0 for
x ¥ R. At a given time t, h(x, t) is piecewise constant, takes nonnegative
integer values, and has jumps of size ±1 only. The jumps are called steps
and we distinguish between up-steps ( jump size 1) and down-steps ( jump
size −1). The dynamics has a deterministic piece, according to which down-
steps move with velocity 1 and up-steps with velocity −1. Surface steps
disappear upon collision. In addition there are nucleation events by which
new steps are created. Randomly in time, h(x, t) is changed to the new
profile h̃(x, t) such that for the increment dh(x, t)=h̃(x, t)−h(x, t) one has
dh(x, t)=1 at some random point xŒ, |xŒ| [ t, and dh(x, t)=0 otherwise.
Immediately after this nucleation event the deterministic evolution is
followed until the next nucleation. Growing for a while the typical height
profile has the shape of a droplet, h(x, t) 4 2`t2−x2 for |x| [ t. Our
interest are the statistical properties of the deviations from this average
shape.

Warning. For the PNG model one has to specify the step speed and
the intensity of the nucleation events. They can be adjusted to an arbitrary
value through a linear scale change of space-time (x, t). Geometrically
velocity one is distinguished and therefore adopted here. Intensity one for
nucleation events seems also natural, but in fact introduces a string of
factors `2. Therefore we deviate from previous conventions and set the
intensity to be equal to 2.

The one-dimensional PNG model is just one model within the KPZ
universality class for growth. However, for this model we have very refined
statistical information, the most surprising breakthrough being the result of
Baik, Deift, and Johansson, (3) which states that

lim
tQ.
t−1/3(h(0, t)−2t)=q2 (1.1)

in distribution, cf. for the connection to the PNG model at the end of the
introduction. q2 has the same distribution as the largest eigenvalue of a
N×N random hermitian matrix (GUE) in the limit of NQ.. As dis-
covered by Tracy and Widom (4) the distribution function F2(x)=P(q2 [ x)
is governed by the Painlevé II equation. One has F2(x)=e−g(x), where
gœ=u2, g(x)Q 0 as xQ., and u is the global positive solution of
uœ=2u3+xu (Painlevé II). Its asymptotics are u(x) 4`−x/2 for
xQ −., u(x) ’ Ai(x) for xQ. with Ai the Airy function. In fact
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through a simple linear transformation (2) one obtains the height fluctua-
tions for any y, |y| < 1, as

lim
tQ.
t−1/3(h(yt, t)−2t`1−y2)=(1−y2)1/3 q2. (1.2)

At the next level of precision, one might wonder about joint distribu-
tions of h(x, t) at the same time, say of {h(x1, t), h(x2, t)}. If x1=y1t and
x2=y2t, y1 ] y2, then the heights are so far apart that they become statis-
tically independent. Thus we have to consider closer by reference points.
From the KPZ theory one knows that the lateral fluctuations live on the
scale t2/3. Therefore the natural object is

yW t−1/3(h(yt2/3, t)−2t)=ht(y) (1.3)

considered as a stochastic process in y. For large t we have Oht(y)P 4−y2

and if in (1.2) we replace yt by yt2/3 we obtain

lim
tQ.
ht(y)=−y2+q2 (1.4)

in distribution, which suggests that ht(y)+y2 tends to a stationary
stochastic process. As our main result we establish that this is indeed the
case and rather explicitly identify the limit process. For reasons which will
become clear in the sequel we call the novel limit process the Airy process
and denote it by A(y). We refer to Section 4 for its definition and to
Section 5 for some of its properties. Somewhat compressed, one considers
independent fermions in one space dimension as governed by the one-par-
ticle Hamiltonian

H=−
d2

du2
+u. (1.5)

The fermions are in their ground state at zero chemical potential, which
is the quasifree state determined by the spectral projection onto {H [ 0}.
Because of the linearly increasing potential there is a last fermion, which
has the Tracy–Widom q2 as positional distribution. Extending to the
Euclidean space-time through the propagator e−yH, the fermions move
along non-intersecting world lines with some suitable statistical weight. The
Airy process A(y) is the position of the last fermion at fermionic time y.

Theorem 1.1. Let A(y) be the stationary Airy process. Then in the
sense of weak convergence of finite dimensional distributions

lim
tQ.
ht(y)=A(y)−y2. (1.6)

Scale Invariance of the PNG Droplet and the Airy Process 1073



We recover the result in ref. 3 as the special case of the convergence of
the distributions for some fixed value of y. Even for fixed y we provide an
alternative proof based on one-dimensional fermionic field theories.

As shown in refs. 2 and 5 the PNG droplet is isomorphic to a directed
polymer with Poissonian point potential which in turn is related to the
length of the longest increasing subsequence in a random permutation. For
the sake of completeness we repeat our result in this language. We consider
Poisson points of intensity 2 in the positive quadrant. A directed polymer
is a piecewise linear path, w, from (0, 0) to (t+x, t−x), |x| [ t, with each
segment of w bordered by Poisson points, under the constraint that their
slope is in [0,.]. The length, L(x, t, w), of the directed polymer w is the
number of Poisson points visited by w. We set

L(x, t)=max
w
L(x, t, w), (1.7)

where the maximum is taken over all allowed directed paths at a fixed
configuration of Poisson points and at specified endpoints. Then, in
distribution,

L(x, t)=h(x, t). (1.8)

Therefore Theorem 1.1 yields the statistical properties of the length of the
optimal path in dependence on its endpoint at transverse distance yt2/3

away from (t, t).
To give a brief outline: In the following section we introduce the multi-

layer PNG model, whose last layer is the PNG droplet. The multi-layer
PNG has the remarkable property that the distribution at time t is the
uniform distribution on all admissible height lines. Such kind of ensemble
can be analyzed through Euclidean Fermi fields. Our case maps onto
independent fermions on the lattice Z with the usual nearest neighbor
hopping energy and subject to a linearly increasing external potential. The
PNG droplet corresponds to the last fermionic world line. The convergence
of the moments of the multi-layer PNG model in essence reduces to the
convergence of the discrete Fermi propagator to the continuum Fermi
propagator corresponding to the Hamiltonian (1.5). In the final section we
establish some properties of the Airy process and discuss the two-point
function O(h(yt2/3, t)−h(0, t))2P.

2. THE MULTI-LAYER PNG MODEL

Inspired by the beautiful work of Johansson on the Aztec diamond (6)

we enlarge the PNG droplet to the multi-layer PNG model. While this
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looks like a further complication, in fact the construction will provide us
with a powerful machinery to analyze the statistics of the PNG droplet.

Instead of a single PNG line we now consider a collection of such
lines, denoted by ha(x, t), a ¥N−={0, −1, −2,...}, taking values in Z,
which are arranged in ascending order, ha(x, t) < ha+1(x, t), for all x ¥ R,
t \ 0, cf. Fig. 1 with a typical snapshot of the multi-layer PNG model at
time t. The lines have jump size ±1 and the total number of up- and down-
steps is assumed to be finite. For each t \ 0 one has ha(x, t)=a for |x| \ t.
To be definite we require ha(x, t)− limE s 0 ha(x± E, t) ¥ {0, 1}, which means
that the height lines are upper semi-continuous. The set of all such height
line configurations is denoted by Lt. The height lines evolve in time under
a rule which is based on Viennot’s geometric construction to prove the
Robinson–Schensted(–Knuth) correspondence,(9) hence called RSK dynamics
by us. The initial line configuration is ha(x, 0)=a, a ¥N− , for all x. Under
the RSK dynamics only the region |x| < t is modified. The top line evolves
stochastically like the PNG droplet. In the lower lying lines the steps move
and coalesce according to the PNG rules. However nucleations are deter-
mined by the annihilation events in the neighboring line above. Thus at
time t if in the ath height line a collision of an up-step and a down-step
occurs at position x, they disappear in this line only to reappear as nuclea-
tion at (x, t) in line a−1. Clearly the RSK dynamics respects the ordering
ha < ha+1.

To describe the configuration space of the multi-layer PNG model at
time t \ 0, we introduce the step positions as coordinates. Let na be the
number of up-steps in height line a. Since ha(−t, t)=ha(t, t), it must equal

h
h

h--2

--1

0

x=tx=-- t

Fig. 1. A snapshot of a multi-layer PNG configuration at time t. As a guide to the eye the
asymptotic droplet shape is indicated.
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the number of down-steps in height line a. If na=0, ha(x, t)=a for all
x ¥ R. If na > 0, the position of the jth up-step in height line a is denoted by
ya,+j , −t < ya,+1 < · · · < y

a,+
na
< t and the position of the jth down-step in

the same height line is denoted by ya, −j , −t < ya, −1 < · · · < y
a, −
na
< t. We set

n=(n0, n−1,...), and |n|=;a [ 0 na. For the RSK dynamics the total number
of steps, 2 |n|, is finite with probability one, since |n| equals the total
number of nucleation events up to time t, i.e., the number of Poisson points
in the triangle {(xŒ, tŒ) | |xŒ| < tŒ, tŒ [ t}. We denote by Ct(n) the set of all
step configurations ((ya,+j , y

a, −
j )1 [ j [ na )a [ 0 resulting from an admissible line

configuration (ha(x, t))a [ 0 ¥ Lt. Ct(0) is a single point and Ct(n) is naturally
embedded in [−t, t]2 |n|. By definition of Lt, if an up-step and a down-step
in the same height line are at the same location, they represent a nucleation
and not a collision. Finally Ct=1 |n| <. Ct(n). We have thus defined the
map S: Lt Q Ct, which we call step map. Clearly, S is invertible. The RSK
dynamics on Lt induces a dynamics of steps on Ct. By construction the
RSK dynamics stays inside Ct with probability one.

Remarkably, the distribution of the multi-layer PNG model at time t
has a simple structure in being the uniform Lebesgue measure on all
admissible step configurations.

Theorem 2.1. Let wt be the uniform measure on Ct, which means
that wt(Ct(0))=1 and wt A Ct(n) is the 2 |n|-dimensional Lebesgue measure
on Ct(n). Then > wt=Z(t)=exp(2t2) and mt=Z(t)−1 wt is a probability
measure on Ct. If the height lines evolve under the RSK dynamics, then mt
is the joint distribution of {ha(x, t), x ¥ R, a ¥N−} under the step map S.

Proof. The nucleation events determining the line configuration at
time t are a Poisson process of intensity 2 in the triangle {(xŒ, tŒ) | |xŒ| < tŒ,
0 [ tŒ [ t}. If (xŒ, tŒ) is a generic Poisson point, we label it through the new
coordinates (y+, y−)=(xŒ−(t−tŒ), xŒ+(t−tŒ)). A Poisson point configu-
ration consisting of N points is then given by (y+i , y

−
i )i=1,..., N, such that

−t < y+1 < · · · < y
+
N < t and y+i < y

−
i , i=1,..., N. The set of all such point

configurations is denoted by Dt(N), considered as a subset of [−t, t]2N.
We also set Dt=1N \ 0 Dt(N), with Dt(0) a single point. Dt inherits from
the Poisson process the probability measure nt, where nt(Dt(0))=e−2t

2
and

nt A Dt(N)=e−2t
2
dy+1 · · · dy

+
N dy

−
1 · · · dy

−
N.

Next we define the growth map G: Dt Q Lt. For given (y+i , y
−
i )1 [ i [N

¥ Dt(N) we run the RSK dynamics to determine the line configuration at
time t. Conversely for a given line configuration in Lt we run the RSK
dynamics backwards in time which then determines the Poisson points
corresponding to the nucleation events. Thus G is well defined. If all the
line configurations with coinciding up- resp. down-step positions in different
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lines—a set of Lebesgue measure zero under the step map—are removed
from Lt, then G is even bijective.

From the construction it is obvious that for S p G : (y+i , y
−
i )i=1,..., N

W ((ya,+j , y
a, −
j )1 [ j [ na )a [ 0 with N=|n| one has the following set equalities,

{y+i , i=1,..., N}={y
a,+
j , j=1,..., na, a ¥N−} and {y−i , i=1,..., N}=

{ya, −j , j=1,..., na, a ¥N−}. Thus the map S p G induces a mere relabeling
of points. In particular nt is transformed to mt under S p G. L

Equipped with Theorem 2.1 the reader may jump ahead to Section 3
where the statistical properties of the line ensemble mt are studied. We take
a little detour to report on two observations of interest. First there is a
variant of the multi-layer PNG dynamics which was introduced by Gates
and Westcott (7) in modeling crystal growth, hence called GW dynamics by
us. Bulk properties of the GW dynamics are studied in ref. 8 in the context
of the anisotropic KPZ equation. Gates and Westcott regard the lines ha as
contour lines of a crystal surface. The crystal is made up of atomic two-
dimensional layers stacked along the z-axis. Layer 0 and below are com-
pletely filled. For layer 1 only the domain {(x, y) ¥ R2 | y [ h0(x, t)} is
filled with atoms, and in general, layer − a+1 is filled in the domain
{(x, y) ¥ R2 | y [ ha(x, t)− a}, a ¥N− . The crystal is in contact with its
supersaturated vapor. If overhangs are not permitted, it is a natural
modeling assumption that each contour line grows under the PNG rules
subject to a constraint of no touching. In this sense the GW dynamics is
‘‘more stochastic’’ than the RSK dynamics. Despite different rules, the
RSK and GW dynamics yield an identical distribution for the line config-
urations at time t. Thus, alternatively, the proof of Theorem 2.1 could be
based on the GW dynamics, cf. later.

A further observation is that the GW dynamics admits a discrete space-
time version which, as to be discussed at the end of this section, inherits the
simplicity of the distribution at time t. In fact, the discrete version of the
GW dynamics is isomorphic to the shuffling algorithm for the Aztec
diamond. This provides us with yet another approach to Theorem 2.1,
namely to take the continuum limit of its discrete analogue.

Let us start with the GW dynamics. The top line h0 evolves as the
PNG droplet. With nucleation rate 2 pairs of up- and down-steps are gen-
erated in the forward light cone of the origin and move apart with velocity
±1. Upon collision step pairs annihilate each other. The lower lines
h−1, h−2,... follow the same dynamics, independently of each other, under
the condition that nucleations are suppressed whenever they violate the
monotonicity constraint, i.e., for height line a, a < 0, nucleations occur only
in the region {x ¥ R | |x| < t, ha+1(x, t)−ha(x, t) \ 2} with space-time rate 2.
As for the RSK dynamics, we have to convince ourselves that the GW
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dynamics lives on Ct with probability one. The simple procedure is to use
duality. We regard the multi-layer PNG model as the stochastic evolution
of the random field gt(j, x) over Z×R with values in {0, 1} by setting

gt(j, x)=˛
1, if ha(x, t)=j for some a,

0, otherwise.
(2.1)

The starting configuration is g0(j, x)=1 for j [ 0, g0(j, x)=0 for j \ 1.
Let us introduce the flipped configuration through ḡt(j, x)=1−gt(j, x)
with the corresponding height lines h̄a(x, t), a=1, 2,... . Then h̄1(x, t)
evolves again as the PNG droplet, now growing downwards towards nega-
tive j. Thus for the original process, at any given time t, there is a random
index a such that ha(x, t)=a for all x. This proves that at any time t with
probability 1 there are only finitely many up- and down-steps.

Proposition 2.2. Let {ha(x, t), x ¥ R, a ¥N−} be the height lines as
generated by the GW dynamics. Under the step map S their joint distribu-
tion is mt, mt of Theorem 2.1.

Proof. We did not discover a global version comparable to the proof
of Theorem 2.1 and have to rely on an infinitesimal argument. Let L(t) be
the forward generator of the Markov jump process induced on Ct through
the GW dynamics. We have to prove that

d
dt
(e−2t

2
wt)=L(t) e−2t

2
wt (2.2)

which means

−4twt=L(t) wt, (2.3)

since dwt/dt=0. L(t) has four pieces. (i): There is a loss term −4t due to
nucleation events at h0(x, t) for x ¥ [−t, t], which cancels the left hand
side of (2.3). (ii): The free flow terms “/“ya,+j of the up-step motion and
−“/“ya, −j of the down-step motion vanish when acting on the Lebesgue
measure. There is no boundary contribution at ±t, because the boundary
moves with the same speed as the steps. (iii) and (iv): Let ra=|{x ¥ R |
|ha(x, t)−ha−1(x, t)| \ 2}| with | · | denoting the one–dimensional Lebesgue
measure and let r=;a [ 0 ra. For given |n| the current configuration gains
in probability due to a transition from |n|+1 to |n| through the collision of
an up-step and a down-step. Their relative velocity is 2. Thus for a small
time interval dt the gain is 2r dt, since the ratio of the weight at |n|+1 to
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the weight at |n| equals 1. There is a loss of probability due to nucleations
in the current configuration. For the time dt it is 2r dt, since nucleation
events have intensity 2. Thus the gain term (iii) cancels exactly the loss term
(iv). More extended versions of our argument can be found in refs. 7 and 8
where, however, a different geometry is discussed. L

Next we introduce a discrete time version of the multi-layer PNG.
As explained in refs. 6 and 10 this model is isomorphic to the shuffling
algorithm for the Aztec diamond. We discretize time, now denoted by
y=0, 1,... . We also discretize the space axis in units of d. As before, at
time y, the height lines are ha(x, y), x ¥ R, a ¥N. ha(x, y)=a for |x| \ dy.
The non-crossing constraint ha−1(x, y) < ha(x, y) is in force. Up- and down-
steps are allowed only at midpoints of the form (m+12) d, m ¥ Z and their
distances must be odd, i.e., of the form (2m+1) d. To update from time
y to time y+1 only changes inside the strip [−(y+1) d, (y+1) d] are
allowed. The actual update consists of a deterministic and a stochastic step.

(i) Deterministic Step. Given ha(x, y) every up-step is moved a
d-unit to the left, every down-step a d-unit to the right. If at time y there is
a block of length 2d, short a 2d-block, with a down-step to the left of an up-
step, then they annihilate each other, i.e., in this block ha(x, y) is replaced
by its maximum. The configuration after the deterministic step is denoted
by h̃a(x, y+1).

(ii) Stochastic Step. The constant pieces of each height line
h̃a(x, y+1) are subdivided in consecutive 2d-blocks. To fix their location,
the left endpoint of a 2d-block either coincides with the right endpoint of
a 2d-block or is 1

2 d away from an up-step, resp. from a down-step. If
h̃0(x, y+1)=0, the 2d-blocks are of the form [(−y−1+2m) d, (−y−1+
2m+2) d]. If h̃a(x, y+1)=a for all x and h̃a+1(x, y+1) ] a+1 for some x,
the 2d-blocks of h̃a(x, y+1) start at (y+12) d with y the position of the first
up-step (from the left) of h̃a+1(x, y+1). Finally we disregard those
2d-blocks for which h̃a+1(x, y+1)−h̃a(x, y+1)=1 for some x inside the
block. After these preparations the stochastic update can be performed.
Independently for each 2d-block, we keep the original piece of the height
line with probability 1−q, 0 < q < 1, and otherwise nucleate an up-step to
the left and a down-step to the right midpoint of the two adjacent
d-intervals. The line configuration after the stochastic update is denoted by
ha(x, y+1).

In the limit of rare events the discrete multi-layer PNG model con-
verges to its continuous time cousin. We set t=yd and denote by [t] the
integer part of t. Then space-time is discretized in cells of lattice spacing d.
A nucleation event covers a block of two adjacent cells. If we set q=4d2,
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then in the limit d Q 0 we obtain a Poisson process of intensity 2. Therefore
in this limit ha(x, [t/d])Q ha(x, t) as a stochastic process.

The discretized multi-layer PNG model inherits the simplicity of the
time y measure, m(y). The height line ha(x, y) has na up-steps. The total
number of up-steps is then ;a [ 0 na=n. To the collection of height
lines {ha(x, y), x ¥ R, a [ 0} we assign the weight (q/(1−q))n. The par-
tition function, Zd(y), is the sum over all weights. We set Zd(y)−1=
P({h0(x, 0)=0}). Therefore

Zd(y)=D
y

j=1
(1−q)−j=(1−q)−y(y+1)/2. (2.4)

If the weight at time y is denoted by w(y), we claim that

m(y)=Zd(y)−1 w(y) (2.5)

is the time y probability measure of the discrete multi-layer PNG. Let Ky
be the transition kernel from y to y+1, as explained in steps (i) and (ii)
earlier. We have to show m(y+1)=m(y) Ky, equivalently

(1−q)y+1 w(y+1)=w(y) Ky. (2.6)

(2.6) is established in Proposition 2.3 later. But first we want to con-
vince ourselves that m(y) yields mt of the continuous time PNG in the limit
d Q 0. We note that for y=[t/d], q=4d2,

lim
dQ 0
Zd([t/d])=lim

dQ 0
exp(− 12 [t/d]([t/d]+1) log(1−4d2))=e2t

2
=Z(t).

(2.7)

A configuration with n up/down-step pairs has the weight (q/1−q)n 5
(4d2)n. Because of the constraint in the up-step locations, in the limit d Q 0
the weight converges to the 2n-dimensional Lebesgue measure constrained
to Ct(n), n=|n|. Thus m([t/d])Q mt as d Q 0, as it should be.

Proposition 2.3. Let the weight, w(y), of the height lines of the
discrete multi-layer PNG be given by (q/(1−q))n, where n is the total
number of up-steps (equivalently down-steps). Then (2.6) holds.

Proof. Let w(y+1) be the weight for the configuration ha(x, y+1).
We construct from it the configuration h̃a(x, y+1) by removing all spikes
from ha(x, y+1), i.e., all 2d-blocks containing an up-step to the left and a
down-step to the right. Let sa be the number of spikes for ha+1(x, y+1), let
na be the number of up-steps for h̃a(x, y+1), and let ba be the number of
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2d-blocks with h̃a(x, y+1) constant such that h̃a+1(x, y+1)−h̃a(x, y+1) \ 2
within that block, b0 is the number of flat 2d-blocks of h̃0(x, y+1). Next we
map the configuration h̃a(x, y+1) to the configuration h̃a(x, y) by moving
all up-down-steps one step backwards in time. By construction, na does
not change. Let aa be the number of downwards open blocks, i.e., flat
2d-blocks of h̃a(x, y) such that ha−1(x, y) has distance \ 2 within that
block.

The transition kernel Ky=KdKs, where Kd is the deterministic step (i)
and Ks is the stochastic step (ii). To compute w(y) Ky, we first evaluate
w(y) Kd in the configuration h̃a(x, y+1). We have to sum over all line con-
figurations ha(x, y) leading to h̃a(x, y+1) under Kd. A downwards open
block of h̃a(x, y) had either no steps, weight 1, or a downwards spike,
weight q/(1−q). Summing over these 2aa possibilities results in the weight
(1−q)−aa (q/(1−q))na for h̃a(x, y+1). Applying the stochastic transition Ks
yields the weight w(y) Ky evaluated at ha(x, y+1) as

q sa(1−q)ba−sa (1−q)−aa (q/(1−q))na. (2.8)

On the other hand, according to w(y+1), ha(x, y+1) has the weight
(q/(1−q)) sa+na. Comparing with (2.6) and (2.8), we have to prove

C
a [ 0
(ba−aa)=y+1. (2.9)

Let N be the index of the last height line for which hN(x, y)=N for
all x. Then aN=0. For two adjacent lines it is easily verified that

ba−aa+1=na+1−na, a [ −1. (2.10)

Inserting in the left side of (2.9) and using nN=0, the telescoping sum gives
b0+n0, which by definition is independent of h̃0(x, y+1) and equals y+1.

L

3. 1+1-DIMENSIONAL FERMI FIELD

wt is the uniform distribution on all allowed line configurations of the
continuous time multi-layer PNG. Except for exclusion (entropic repulsion),
the height lines do not interact. Such a statistical mechanics system is most
conveniently analyzed through the transfer matrix method. Its implemen-
tation requires the height lines to be restricted to a bounded interval
{−M, −M+1,..., M}=IM. The case of interest is then obtained in the
limit asMQ.. To explain the principle, we omit the argument t and label
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the height lines more conventionally as ha(x), a=1,..., N, N [ 2M+1, with
x ¥ [0, t]. The height lines are constrained through −M [ h1(x) < · · · <
hN(x) [M for all x ¥ [0, t]. In addition we fix the initial configuration q
and the final configuration qŒ, i.e., ha(0)=qa, ha(t)=q

−

a, a=1,..., N. As
before under the step map the ath height line is specified by the location of
the up-steps, 0 < ya,+1 < · · · < y

a,+
na
< t, and the location of the down-steps,

0 < ya, −1 < · · · < y
a, −
nŒa
< t, where na ] n

−

a is allowed. Admissible line config-
urations are assumed to have a uniform weight, which means that a small
volume element has the weight <N

a=1 <na
j=1 <n −a

jŒ=1 dy
a,+
j dy

a, −
jŒ . The con-

figuration with no steps has weight 1.
We want to compute the partition function Zt(q, qŒ) which is defined

as the weight integrated over all admissible step configurations. For this
purpose the simplex WN={q ¥ ZN | −M [ q1 < · · · < qN [M} is intro-
duced. Clearly q, qŒ ¥ WN and we regard Zt(q, qŒ) as a |WN |× |WN | matrix.
By the product property of the Lebesgue measure Zt satisfies the semigroup
property

ZtZs=Zt+s, t, s \ 0, Z0=1, (3.1)

1 the identity matrix. Thus there exists an infinitesimal generator GN, such
that

Zt=e−tGN, t \ 0. (3.2)

Differentiating at t=0 one concludes that GN acting on functions f on WN
is given by

GNf(q)=− C
qŒ ¥ WN

c(q, qŒ) f(qŒ), (3.3)

where for q, qŒ ¥ WN

c(q, qŒ)=˛1 if ;N
a=1 |qa−q

−

a |=1,

0 otherwise.
(3.4)

Computationally much more powerful is to impose the constraint of
no overlap through antisymmetry. Let FN be the subspace of a2((IM)N)
consisting of antisymmetric functions over (IM)N, i.e., f ¥FN satisfies

f(q1,..., qN)=(−1) sign p f(qp(1),..., qp(N)) (3.5)
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for every permutation p. FN is equipped with the canonical basis
fq, q ¥ WN, defined through

fq(qŒ)=
1

`N!
C
p

(−1) sign p dq(q
−

p(1),..., q
−

p(N)) (3.6)

with dq(qŒ)=1 if q=qŒ and dq(qŒ)=0 otherwise. The normalization is
chosen such that Ofq, fqŒP=dq(qŒ), with O · , ·P denoting the scalar product
in FN. Let us also define the one-particle Hamiltonian

HMd k(−M)=−k(−M+1), HMd k(M)=−k(M−1),

HMd k(n)=−k(n+1)−k(n−1) for |n| < M, (3.7)

as acting on functions k over IM. The correspondingN-particle Hamiltonian,
is then given through

HMd, N=C
N

j=1
1 é · · · éHMd é · · · é 1, (3.8)

where HMd is inserted at the jth position of the N-fold product. Clearly for
f ¥FN one has HMd, Nf ¥FN and HMd, N is regarded as acting on FN. With
these notations one has the identity

Ofq, e−tH
M
d, NfqŒP=e−tGN(q, qŒ)=Zt(q, qŒ) (3.9)

for q, qŒ ¥ WN.
At this point it is more convenient to switch to fermionic language

which is devised precisely to take the antisymmetry into account. The CAR
algebra over IM is generated by ag(j), a(j), j ¥ IM. They satisfy the canon-
ical anticommutation relations

{a(i), ag(j)}=dij, {a(i), a(j)}=0, {ag(i), ag(j)}=0, (3.10)

i, j=−M,..., M, {A, B}=AB+BA. In the Fock representation the algebra
is realized as operators on the antisymmetric Fock space F over IM,

F=Â
2M+1

N=0
FN. (3.11)

The second quantization of the (2M+1)×(2M+1) matrix HMd is defined
by

H1 Md = C
i, j ¥ IM

ag(i)(HMd )ij a(j). (3.12)
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H1 Md restricted to FN agrees with HMd, N. From (3.9) one concludes that as a
fermionic operator the transfer matrix is given through

e−tH1
M
d , t \ 0, (3.13)

which covers all 0 [N [ 2M+1.
We exploit the new flexibility by assuming that q, qŒ ¥ W=1 2M+1

N=0 WN,
which is identified with {0, 1}IM. The case of interest is q=qŒ and each
boundary configuration q has the weight <M

j=−M exp(l(j);N
i=1 dqi, j). In

other words the configuration q has a product weight with factor el(j) if site
j is occupied and factor 1 if the site j is empty. The corresponding partition
function is then given through

ZlM=tr[eN1
M
e−tH1

M
d ], (3.14)

where the trace is over F and

N1 M= C
j ¥ IM

l(j) ag(j) a(j). (3.15)

The probability that site j at x is occupied, i.e., ha(x)=j for some a, is
obtained from the transfer matrix as

(ZlM)
−1 tr[eN1

M
e−xH1

M
d ag(j) a(j) e−(t−x) H1

M
d ]=tr[r1Mx a

g(j) a(j)], (3.16)

with the density matrix

r1Mx =(Z
l
M)
−1 e−(t−x) H1

M
d eN1

M
e−xH1

M
d , (3.17)

0 [ x [ t.
Exponentials of operators quadratic in a, ag are easily handled. If A is

a (2M+1)×(2M+1) matrix with second quantization

Â= C
i, j ¥ IM

ag(i) Aija(j), (3.18)

then

e Â=eA é · · · é eA (3.19)

on FN. This implies

tr[e Â]=det(1+eA)=ZA, (3.20)
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compare with ref. 11. Let us set r1A=(ZA)−1 e Â as density matrix. The two-
point function has the form

R(i, j)=tr[r1Aag(i) a(j)]=((1+e−A)−1)ji (3.21)

and more generally

tr[r1Aag(i1) · · · ag(im) a(jn) · · · a(j1)]=dm, n det(R(ik, jkŒ))k, kŒ=1,..., m.
(3.22)

The expectations of other monomials are determined by means of the anti-
commutation relations (3.10). One may regard tr[r1A · ]=wA( · ) as a linear
functional on the CAR algebra. By definition wA(1)=1. If in addition wA
is positive, then wA is called a quasifree state. (15)

As can be seen from (3.19) products of exponentials follow the same
pattern. For the (2M+1)×(2M+1) matrices A, B we set

eAeB=eC. (3.23)

Then

e ÂeB1=eC1 (3.24)

with ·1 defined as in (3.18).
Each ag(i) a(i) is a symmetric projection and thus has eigenvalues in

{0, 1}. {ag(i) a(i), i ¥ IM} is a family of commuting operators. Under r1Mx
they have a joint signed spectral measure which by construction is a prob-
ability measure on {0, 1}IM. By (3.22) it is of determinantal form, compare
also with (3.54) later. Thus under r1Mx the family {ag(i) a(i), i ¥ IM} is a
point process on IM. In the probabilistic literature point processes of this
structure are known as determinantal. (12)

Our construction extends to occupation variables depending on several x.
For example, the probability that site j at x and site i at y, 0 < x < y < t,
are both occupied is obtained through the transfer matrix as

(ZlM)
−1 tr[eN1

M
e−xH1

M
d ag(j) a(j) e−(y−x) H1

M
d ag(i) a(i) e−(t−y) H1

M
d ]. (3.25)

Such expressions can be computed using (3.24) and (3.23), and the rules

e tÂa(j) e−tÂ= C
i ¥ IM

(e−tA)ji a(i), e tÂag(j) e−tÂ= C
i ¥ IM

ag(i)(e tA)ij. (3.26)

With these preparations we return to the PNG droplet. Recall the
definition (2.1) of the random field of occupation variables gt(j, x), j ¥ Z,
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x ¥ R: gt(j, x)=1 if ha(x, t)=j for some a and gt(j, x)=0 otherwise. By
definition gt(j, x)=0 for j \ 1, |x| \ t, and gt(j, x)=1 for j [ 0, |x| \ t.
The joint distribution of gt(j, x), j ¥ Z, x ¥ R, is induced through the
probability measure mt with expectation denoted by Et. Our first goal is to
obtain the joint distribution of gt(j, 0), j ¥ Z. From the considerations
above, it is obvious that this point process is determinantal. The only
remaining task is to compute the two-point function and to study its limit
behavior. One should pay attention to a minor linguistic problem. The
meaning of the time parameter t of the PNG model is now reduced to a
mere scaling parameter. j labels fermionic space and x stands for fermionic
time. Thus space-time means now Z×R.

Let us start by explaining the result for moments at x=0. We intro-
duce the limitMQ. of the one-particle Hamiltonian in (3.7) as

Hdk(n)=−k(n+1)−k(n−1). (3.27)

In addition, we add a linear potential of slope 1/t to define

Htk(n)=−k(n+1)−k(n−1)+
n
t

k(n), (3.28)

regarded as an operator on a2=a2(Z). Ht has the complete set of eigen-
functions j (l)(n)=Jn−l(2t), l ¥ Z, with eigenvalues el=

l
t , Htj

(l)=elj
(l),

Oj (l), j (lŒ)P=dl lŒ, O · , ·P denoting the scalar product. Here Jn(z) is the
Bessel function of integer order n and we follow throughout the conven-
tions of ref. 14, Chapter 9. We will need the spectral projection Bt onto
{Ht [ 0}. In position space its integral kernel is the discrete Bessel kernel

Bt(i, j)=C
l [ 0
Ji− l(2t) Jj− l(2t). (3.29)

Using that Htj (l)=elj
(l), (3.29) can be converted into a telescoping sum

with the result

Bt(i, j)=
t
i−j
(Ji−1(2t) Jj(2t)−Ji(2t) Jj−1(2t)) (3.30)

for i ] j and on the diagonal

Bt(i, i)=t(Li−1(2t) Ji(2t)−Li(2t) Ji−1(2t)), (3.31)

where Lj(2t)=
d
dj Jj(2t). We also introduce the CAR algebra Ad over Z.

It is generated by the operators a(j), ag(j), j ¥ Z, satisfying the canonical
anticommutation relations (3.10). Let wt be the quasifree state on the CAR
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algebra Ad defined through wt(a(j))=0=wt(ag(j)) and the two-point
function

wt(ag(i) a(j))=Bt(i, j), (3.32)

which means that higher order monomials satisfy (3.22) with R replaced
by Bt. (15) wt is the ground state for non-interacting fermions with one-par-
ticle Hamiltonian (3.28) at zero chemical potential.

Theorem 3.1. We have

Et 1D
m

k=1
gt(jk, 0)2=wt 1D

m

k=1
ag(jk) a(jk)2=det(Bt(jk, jkŒ))1 [ k, kŒ [ m,

(3.33)

the second equality being valid only for pairwise distinct points j1,..., jm.

Proof. The state wt has an infinite number of fermions and cannot
be represented as a vector in Fock space. Thus we first have to constrain to
finite volume IM, such that |ha(x, t)| [M, a=0,..., −M. The corresponding
uniform distribution is denoted by mMt . Clearly mMt converges to mt as
MQ.. By construction ha(t, t)=ha(−t, t)=a, a=0, −1, −2,... . In other
words gt(j, −t)=gt(j, t)=1 for j [ 0 and =0 for j \ 1. It is convenient
to approximate these boundary configurations through the weight eb,
−M [ j [ 0, weight e−b, 1 [ j [M, for an occupied site and weight 1 for
an empty site in the limit b Q.. Thus, if we set N1 M as in (3.15) with
l(j)=1 for −M [ j [ 0 and l(j)=−1 for 1 [ j [M, we have

EMt 1D
m

k=1
gt(jk, 0)2= lim

bQ.

1
Z(b)

tr 5ebN1Me−tH1 Md D
m

k=1
ag(jk) a(jk) e−tH

1 M
d 6

(3.34)

with Z(b) the normalizing partition function. Since the moments of a
quasifree state are determined by the two-point function, to prove (3.33) it
suffices to consider the expectation of ag(j) a(i) and to subsequently take
the limit MQ.. Let PM− be the projection onto {−M,..., 0}, PM+ onto
{1,..., M}, PM++P

M
− being the identity. Then

lim
bQ.

Z(b)−1 tr[ebN1
M
e−tH1

M
d ag(j) a(i) e−tH1

M
d ]

= lim
bQ.

((1+e tH
M
d (ebPM++e

−bPM− ) e
tHMd )−1)ij

=(e−tH
M
d PM− (P

M
++P

M
− e

−2tHMd PM− )
−1 PM− e

−tHMd )ij. (3.35)
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If P− denotes the projection onto N− , P+=1−P− , then

lim
MQ.

PM±=P± , lim
MQ.

e tH
M
d=e tHd. (3.36)

To prove the theorem we only have to check the identity

e−tHdP−(P++P−e−2tHdP−)−1 P−e−tHd=Bt (3.37)

as an operator identity on a2.
We define the left shift D, Dk(n)=k(n+1), and the adjoint right shift

Dg, Dgk(n)=k(n−1). Clearly [D, Dg]=0. One has Hd=−D−Dg. Using
2 ddt Jn(t)=Jn−1(t)−Jn+1(t), one obtains

d
dt
Bt=(Dg−D) Bt−Bt(Dg−D). (3.38)

Integrating with the initial condition B0=P− yields

Bt=e t(D
g−D)P−e−t(D

g−D) (3.39)

and

e tHdBte tHd=e−t(D+D
g)e t(D

g−D)P−e−t(D
g−D)e−t(D+D

g)=e−2tDP−e−2tD
g
. (3.40)

Therefore (3.37) is equivalent to

e−2tDP−e−2tD
g
=(P−e2tD

g
e2tDP−)−1 (3.41)

as an operator identity on P−a2. We decompose our space as a2=
P+a2 À P−a2. Then with the definition

e−2tD=1a 0
b c
2 (3.42)

we have

e−2tDP−e−2tD
g
=1a 0
b c
210 0
0 1
21ag bg

0 cg
2=10

0
0
cgc
2 . (3.43)

Using the splitting of (3.42), one constructs the inverse operators e2tD, e2tD
g
.

By a straightforward computation one obtains

P−e2tD
g
e2tDP−=1

0
0

0
(cgc)−1
2 . L (3.44)
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From Theorem 3.1 one immediately infers the distribution of the
height of the PNG droplet at x=0. Clearly

Pt({h(0, t) < n})=Pt({gt(j, 0)=0 for all j \ n})

= lim
bQ.

wt 1D
.

j=n
e−ba

g(j) a(j)2= lim
bQ.

det(1−(1−e−b) PnBt)

=det(1−PnBt), (3.45)

where Pn denotes the projection onto {n, n+1,...} in a2. Since L(0, t)=
h(0, t), see Eq. (1.8), we have rederived that the length of the longest
increasing subsequence of a Poissonized random permutation has a distri-
bution linked to the discrete Bessel kernel. Previous proofs take the route
via the Plancherel measure. We refer to ref. 16. It would be of interest to
better understand how these proofs are linked to the multi-layer PNG.

So far we considered only the distribution of gt(j, x) at x=0. The
transfer matrix method can handle also the distribution referring to several x,
like the joint distribution of gt(i, 0), gt(j, x), see Eq. (3.25). The transfer
matrix is generated by the HamiltonianHd of (3.27). As in the case of fixed x,
the joint moments have determinantal form with the entries given by
the Euclidean Fermi propagator Bt(j, x; jŒ, xŒ). Following the scheme in
(3.34) it is defined through a finite volume approximation, Bt(j, x; jŒ, xŒ)=
limMQ. limbQ. B

Mb
t (j, x; jŒ, xŒ), where

BMbt (j, x; jŒ, xŒ)

=˛
Z(b)−1 tr[ebN1

M
e−tH1

M
d (e−xH1

M
d ag(j) exH1

M
d )(e−xŒH1

M
d a(jŒ) exŒH1

M
d ) e−tH1

M
d ]

for −t [ x [ xŒ [ t,

−Z(b)−1 tr[ebN1
M
e−tH1

M
d (e−xŒH1

M
d a(jŒ) exŒH1

M
d )(e−xH1

M
d ag(j) exH1

M
d ) e−tH1

M
d ]

for −t [ xŒ < x [ t. (3.46)

Note that time order must be respected in such a way that there are only
decaying exponentials. The minus sign in (3.46) for xŒ < x results from
commuting ag and a. At coinciding arguments the definition conforms with
E(gt(j, x))=Bt(j, x; j, x). Using (3.26) one obtains

Bt(j, x; jŒ, xŒ)=(e−xHd(Bt−1h(x−xŒ)) exŒHd)jjŒ, (3.47)

for |x| [ t, |xŒ| [ t, x ] xŒ, with the step function h(x)=0 for x < 0,
h(x)=1 for x > 0. Bt has a jump discontinuity at x=xŒ. For coinciding
time arguments one has

Bt(j, x; jŒ, x)=(e−xHdBtexHd)jjŒ. (3.48)
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For later use the propagator is rewritten in the eigenbasis of Ht. The
integer order Bessel function has the representation

Jn(2t)=
1
2pi

G
dz
z
e t(z

−1−z)zn (3.49)

where the contour integration is a circle around z=0. Therefore

(e−xHdJ.(2t))n=
1
2pi

G
dz
z
e t(z

−1−z)ex(z
−1+z)zn. (3.50)

Substituting z by (t+x)1/2 (t−x)1/2 z yields

(e−xHdJ.(2t))n=Jn(2`t2−x2)1
t+x
t−x
2n/2 (3.51)

and thus for x ] xŒ

Bt(j, x; jŒ, xŒ)=C
l ¥ Z

sgn(xŒ−x) h 1 (x−xŒ)1 l+1
2
221 t+x
t−x
2 (j− l)/2

×Jj− l(2`t2−x2) JjŒ−l(2`t2−xŒ2)1
t−xŒ
t+xŒ
2 (jŒ−l)/2.

(3.52)

At coinciding arguments x=xŒ one has

Bt(j, x; jŒ, x)=C
l [ 0

1 t+x
t−x
2 (j−jŒ)/2 Jj− l(2`t2−x2) JjŒ−l(2`t2−x2)

(3.53)

With these preparations for a general moment of the density field gt(j, x)
one has the identity

Et 1D
m

k=1
gt(jk, xk)2

= lim
MQ.

lim
bQ.

Z(b)−1

× tr 5ebN1Me−tH1 Md 1D
m

k=1
e−xp(k)H1

M
d ag(jp(k)) a(jp(k)) exp(k)H

1 M
d 2 e−tH1 Md 6

=det(Bt(jk, xk; jkŒ, xkŒ))1 [ k, kŒ [ m. (3.54)
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As written, (3.54) is valid only for pairwise distinct x1,..., xm, where p is the
unique permutation of 1,..., m such that the time ordering −t [ xp(1) < · · ·
< xp(m) [ t is ensured. The spatial arguments j1,..., jm are arbitrary. While
each off-diagonal factor in the determinant has a jump discontinuity at
xk=xkŒ, the determinant itself depends continuously on x1,..., xm, and
thereby the continuous extension of (3.54) holds for all jk ¥ Z, −t [ xk [ t,
k=1,..., m.

As an application of (3.54) we establish the joint distribution of
{gt(j, x), j ¥ Z} for fixed x, |x| [ t. From (3.53) one derives immediately

e−xHdBtexHd=gB`t2−x2 g
−1 (3.55)

where g is a multiplication operator with diagonal entries g(n)=((t+x)/
(t−x))n/2. In (3.54) we take the limit of coinciding xk=x, k=1,..., m,
leaving j1,..., jm pairwise distinct. Upon forming the determinant in (3.54)
the similarity transformation g drops out and the result is (3.33) with Bt
replaced by B`t2−x2. Thus the joint distribution of {gt(j, x), j ¥ Z} is again
given through the discrete Bessel kernel with time parameter modified from
t to`t2−x2.

The same conclusion can be drawn by taking the discrete PNG model
as starting point. As explained in ref. 6 the analogue of the fixed x distri-
butions is given through the Krawtchouk polynomials. Their limit as d Q 0,
q=4d2, dy=t, yields the joint distribution of {gt(j, x), j ¥ Z} as given
through (3.33) with parameter`t2−x2 instead of t.

In the following section we establish the scaling limit of the PNG
droplet at locations of order (yt2/3, 2t+ut1/3), y, u ¥ R. Since at x=wt,
|w| < 1, the distribution is determined by the discrete Bessel kernel Bt`1−w2,
we could instead of w=0 choose any other reference point (wt, 2`1−w2 t)
and relative displacements (wt+yt2/3, 2`1−w2 t+ut1/3). Except for scale
factors, the limit tQ. does not depend on the choice of w.

4. EDGE SCALING, CONVERGENCE TO THE AIRY PROCESS

We plan to establish that the statistics of the PNG droplet close to
x=0 converges to the Airy process. Since only moments are under control,
the natural strategy is to prove that the Fermi field of Section 3 has a limit
when viewed from the density edge. In particular, this implies, that the sta-
tistics of the last fermionic world line has a limit, which is the desired
result.
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Since Oh(0, t)P=2t, the focus has to be at x=0+yta, j=2t+utb,
y, u ¥ R fixed. Rescaling “k/“x=Htk accordingly one obtains

“

“y
k=ta 1 −k(u+t−b)−k(u−t−b)+

1
t
(2t+utb) k(u)2 . (4.1)

To have a limit operator as tQ. requires

a=2
3 , b=1

3 , (4.2)

and with this choice (4.1) converges to

“

“y
k=Hk, H=−

“
2

“u2
+u (4.3)

regarded as a self-adjoint operator on L2(R). H is the Airy operator. The
limit density field must correspond to free fermions with H as one-particle
Hamiltonian. The fermions are in their ground state at zero chemical
potential.

Let us first describe the Fermi field in more detail. The Airy operator
H has R as spectrum, which is purely absolutely continuous. The general-
ized eigenfunctions are the Airy functions,

−
d2

du2
Ai(u−l)+u Ai(u−l)=l Ai(u−l). (4.4)

In particular the completeness relation

F dl Ai(u−l) Ai(v−l)=d(u−v) (4.5)

holds. K denotes the spectral projection onto {H [ 0}. Its integral kernel is
the Airy kernel

K(u, v)=F
0

−.
dl Ai(u−l) Ai(v−l)

=
1
u−v

(Ai(u) AiŒ(v)−AiŒ(u) Ai(v)). (4.6)

Next we introduce the Fermi field a(u), ag(u), indexed by u ¥ R. To distin-
guish from the fermions on a lattice we should use a different symbol. Since
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the latter will not reappear, we find it more convenient to stick to familiar
notation. Integrated over a test function f ¥ L2(R) the Fermi field becomes
a(f)=> du fg(u) a(u), ag(f)=> du f(u) ag(u)=a(f)g. They satisfy the
canonical anticommutation relations {a(f), a(g)}=0={ag(f), ag(g)}
and {a(f), ag(g)}=(f, g) with ( · , · ) denoting the inner product of f ¥

L2(R), (15) and generate the CAR algebra A. On A we define the quasifree
state w through w(a(f))=0=w(ag(f)) and w(ag(f) a(g))=(f, K g).
In particular, the moments of the density field are given by

w 1D
m

n=1
ag(uk) a(uk)2=det K(uk, ukŒ)1 [ k, kŒ [ m, (4.7)

for pairwise distinct u1,..., um, compare with (3.33). (4.7) is the mth corre-
lation function. It vanishes at coinciding points.

To extend to unequal times one defines the Euclidean propagator

K(u, y; uŒ, yŒ)=(e−yH(K−1h(y−yŒ)) eyŒH)(u, uŒ)

=sign(yŒ−y) F dl h(l(y−yŒ)) el(yŒ−y) Ai(u−l) Ai(v−l),
(4.8)

for y ] yŒ, written in terms of eigenfunctions of H, and

K(u, y; u, y)=K(u, u), (4.9)

compare with (3.47), (3.48). The quasifree state w and the propagator are
both determined by the Airy operator H, which implies that K depends
only on y−yŒ.

The Airy field, denoted by t(f, y)=> du f(u) t(u, y), is the density
field of the Fermi system defined through (4.8), (4.9). As in (3.54), its
moments are of determinantal form and given by

E 1D
m

k=1
t(fk, yk)2=F D

m

k=1
duk fk(uk) det(K(uk, yk; ukŒ, ykŒ))1 [ k, kŒ [ m.

(4.10)

As it stands the left hand side of (4.10) is only defined for pairwise distinct
y1,..., ym, but as in (3.54) it can be continuously extended to arbitrary time
arguments. Since K depends only on y−yŒ, the Airy field t(f, y) is sta-
tionary in y.
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Having introduced the limit object we turn to the edge scaling. Recall
that the PNG droplet has curvature. Therefore we set the scaled density
field of the multi-layer PNG model, denoted by tt, as

tt(u, y)=t1/3gt([2t+t1/3(u−y2)], t2/3y), (4.11)

[ · ] denoting the integer part. When integrated over the real, smooth, and
rapidly decreasing test function f we have

tt(f, y)=F du f(u) tt(u, y)

= C
.

j=−.
f(t−1/3(j−2t)+y2) gt(j, t2/3y)+O(t−1/3)

=C
a [ 0
f(t−1/3(ha(t2/3y, t)−2t)+y2)+O(t−1/3), (4.12)

where the error of order t−1/3 results from integrating over cells of size t−1/3

in the defining identity. Thus (4.12) shows that through controlling the
limiting moments of tt(f, y) one can infer the limit of the scaled height
lines t−1/3(ha(t2/3y, t)−2t)+y2.

Theorem 4.1. Let f1,..., fm be smooth test functions of compact
support. Then the following limit holds,

lim
tQ.

Et 1D
m

k=1
tt(fk, yk)2=E 1D

m

k=1
t(fk, yk)2 . (4.13)

Proof. Comparing (3.54) and (4.10) we have to establish that the
propagator (3.47), properly scaled, converges to the continuum propagator
(4.8). This limit can be handled most directly in the representation (3.52).
We will need a separate argument for y ] yŒ and for the left, resp. right,
limit y=yŒ.

The case y < yŒ runs in complete parallel to y > yŒ. To simplify nota-
tion let us assume y < yŒ. The propagator for the scaled density field is

Kt(u, y; uŒ, yŒ)=e−2t
2/3ye (u−y

2) yt1/3

×Bt([2t+t1/3(u−y2)], t2/3y, [2t+t1/3(uŒ−yŒ2)], t2/3yŒ)

×e2t
2/3yŒe−(uŒ−yŒ

2) yŒ. (4.14)
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y, yŒ are fixed and Kt is considered as a function on R2. It is constant over
cells of size t−1/3. We used here the freedom that the determinant of (3.54)
does not change under a similarity transformation and multiplied with
the factor exp(2t2/3(yŒ−y)) exp((u−y2) y−(uŒ−yŒ2) yŒ) which diverges as
tQ.. Kt, with the obvious extension to y > yŒ, determines the moments of
the scaled density field as

Et 1D
m

k=1
tt(fk, yk)2

=F D
m

k=1
duk fk(uk) det(Kt(uk, yk; ukŒ, ykŒ))1 [ k, kŒ [ m+O(t−1/3), (4.15)

clearly analoguous to (4.10).
We insert (3.52) into (4.14). Then

Kt(u, y; uŒ, yŒ)

=t−1/3 C
l ¥ t −1/3N−

e (yŒ−y) lt1/3J[2t+t1/3(u−y2−l)](2t`1−t−2/3y2)

×t1/3J[2t+t1/3(uŒ−yŒ2− l)](2t`1−t−2/3yŒ2)

×3exp 1 −(2t2/3y−(u−y2) y−ly)211+t
−1/3y

1−t−1/3y
2 (2t+t

1/3(u−y2−l))/2

× exp 12t2/3yŒ−(u−yŒ2) yŒ−lyŒ 211−t
−1/3yŒ

1+t−1/3yŒ
2 (2t+t

1/3(uŒ−yŒ2− l))/24

(4.16)

If y < yŒ and l [ 0, the term { · · · } is uniformly bounded in t, l and con-
verges to 1 as tQ.. In fact this holds uniformly in u, uŒ on compact sets.
By a result of Landau (17)

sup
n
t1/3 |Jn(2t)| [ c/21/3 (4.17)

with c=0.7857 · · · . From the asymptotics of integer Bessel functions,
cf. (9.3.23) of ref. 14, we conclude, uniformly for u varying over a compact
set,

lim
tQ.
t1/3J[2t+t1/3(u−y2)](2t`1−t−2/3y2)=Ai(u). (4.18)
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Since e (yŒ−y) l, l [ 0, is integrable, by dominated convergence

lim
tQ.
Kt(u, y; uŒ, yŒ)=K(u, y; uŒ, yŒ) (4.19)

uniformly over compact u, uŒ sets.
Next we consider yŒ s y in (4.14), the right hand limit being handled

analogously. If the discrete Bessel kernel is transformed according to (3.55),
then

Kt(u, y; v, y)=ey(u−uŒ) 1
1+t−1/3y
1−t−1/3y
2[2t+t

1/3(u−y2)]/2 11−t−1/3y
1+t−1/3y
2[2t+t

1/3(v−y2)]/2

×t1/3Bt`1−t −2/3y2([2t+t
1/3(u−y2)], [2t+t1/3(v−y2)]).

(4.20)

The first factor is uniformly bounded over compact u, v sets and converges
to 1 as tQ.. By Proposition (4.1) of ref. 18 the discrete Bessel kernel with
our scaling converges to the Airy kernel K(u, v) uniformly on compact u, v
sets as tQ..

We conclude that (4.19) holds not only for y ] yŒ but also for its right
and left limits. Our claim follows by taking the limit tQ. in (4.15) which
then yields (4.10). L

The Airy field t(f, y) is stationary in y. t(f, y) is a point process for
fixed y. Its average density is given by

E(t(u, y))=−u Ai(u)2+AiŒ(u)2 (4.21)

which has the asymptotics (19)

E(t(u, y)) 4 ˛
1
p
|u|1/2−

1
4p|u|

cos(4|u|3/2/3)+O(|u|−5/2) for uQ −.,

17
96p
u−1/2 exp(−4u3/2/3) for uQ..

(4.22)

Note that for uQ. the density decays quickly because of the increasing
linear potential, whereas for uQ −. the density is limited through the
Fermi exclusion. In particular, the point process for g(f, y) has a last point
at h0(y) with probability one. Since all points are distinct, (12) one can label
as

h0(y) > h−1(y) > · · · . (4.23)
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yW ha(y), a ¥N− , are the fermionic world lines underlying the Airy field.
As to be shown in Appendix A yW ha(y) is continuous with probability
one. Moreover O(ha(y)−ha(yŒ))2P 4 2 |y−yŒ|, which suggests that the path
measure for {ha(y), |y| < c, a=−M,..., 0} is absolutely continuous with
respect to the Wiener measure, i.e., locally ha(y) is a modified Brownian
motion.

Our main focus is the last fermion line.

Definition 4.2. Let t(f, y) be the Airy field. The last world line,
h0(y), is called the Airy process and denoted by A(y).

We collect the basic properties of the Airy process.

Theorem 4.3. The Airy process A(y) has continuous sample paths.
A(y) is stationary. For given y, A(y) has the distribution of q2 of Tracy–
Widom, see below Eq. (1.1).

The convergence of the multi-layer PNG model to the Airy field
implies that the shape fluctuations of the PNG droplet converge to the Airy
process as tQ.. The following theorem is the precise version of the main
result, Theorem 1.1, stated in the Introduction.

Theorem 4.4. Let h(x, t) be the height of the PNG droplet and
ht(y) its scaled version according to (1.3). Let A(y) be the Airy process.
Then for any m, yj, aj ¥ R, j=1,..., m, we have

lim
tQ.

Pt({ht(yj)+y
2
j [ aj, j=1,..., m})=P({A(yj) [ aj, j=1,..., m}).

(4.24)

Proof. Let fj be the indicator of the interval (aj,.). Then (4.24)
means

lim
tQ.

Pt 13
m

j=1
{tt(fj, yj)=0}2=P 13

m

j=1
{t(fj, yj)=0}2 . (4.25)

We choose a sufficiently large and split as fj=f
a
j+g

a, where faj is the
indicator function of the interval (aj, a] and ga is the one of (a,.). Then
tt(fj, yj)=tt(f

a
j , yj)+tt(ga, yj). By Theorem 4.1 the joint moments of

tt(f
a
j , yj), j=1,..., m, converge to their limit. Since their limit measure on

Rm is uniquely defined by its moments we conclude that (4.25) holds with
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fj replaced by faj . Up to constants the error term is bounded by a sum
over terms of the form

Pt(tt(ga, yj) \ 1) [ Et(tt(ga, yj))= C
j \ t1/3a

Bt`1−t −2/3y2j (j, j) (4.26)

which has a bound C(a) uniform in t such that C(a)Q 0 exponentially as
aQ., compare with (4.22). L

5. SOME PROPERTIES OF THE AIRY PROCESS, TWO-POINT

FUNCTION

The scale invariant statistics of the PNG droplet is governed by the
Airy process. To gain some more quantitative information we have to
study the Airy process, most prominently its distribution at a single point
and at two points.

We denote by Pa the projection onto the interval (a,.), i.e.,
Pak(u)=qa(u) k(u) with qa(u) the indicator function of the set (a,.). By
definition

P({A(y) [ a})=P({t(qa, y)=0}). (5.1)

Let us set N1 (qa)=>.a ag(u) a(u) du. Then

P(t(qa, y)=0)= lim
bQ.

w(e−bN1 (qa)). (5.2)

Since w is quasifree,

w(e−bN1 (qa))=det[1+(e−b−1) PaK], (5.3)

where the determinant is in L2(R). PaK is of trace class (4) and taking b Q.

yields

P({A(y) [ a})=det[1−PaK]. (5.4)

This determinant is studied in ref. 4 and shown to be related to the Painlevé
II differential equation. A plot for the probability distribution of A(y) can
be found, for example, in refs. 2 and 5.

The next quantity of interest is the joint distribution of A(0), A(y),
where by reversibility it suffices to consider y > 0. By the same scheme as
before one computes
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P({A(0) [ a, A(y) [ b})=P({t(qa, 0)=0} 5 {t(qb, y)=0})

= lim
bQ.

w(e−bN1 (qa)e−yH1e−bN1 (qb)eyH1). (5.5)

Since w is quasifree,

w(e−bN1 (qa)e−yH1e−bN1 (qb)eyH1)=det(1−Bb) (5.6)

with

Bb=(1−e−b)(PaK+e−yHPbeyHK)−(1−e−b)2 Pae−yHPbeyHK. (5.7)

e−yHPbeyHK is trace class, cf. Appendix B. Thus

P({A(0) [ a, A(y) [ b})=det[1−B] (5.8)

and

B=PaK+e−yHPbeyHK−Pae−yHPbeyHK. (5.9)

Clearly, the determinant converges to 1 as a, bQ. and to 0 as a, bQ −..
The properties of (5.4) suggest that also the joint distribution might

satisfy a differential equation. We did not succeed in finding one. Since the
main interest is large y, we rely on standard asymptotics by employing the
expansion

log det[1−B]=−C
.

n=1

1
n

tr[Bn]. (5.10)

When taking the trace of Bn, we see that eyHK is a bounded operator, but
e−yH remains unbalanced, since H is not bounded from below. E.g., tr[B]
diverges as exp(y3/2) for yQ.. The form tr[Bn] is not suited for studying
large y.

Such a situation is well known in the theory of Fermi systems. (20, 21)

Since the Dirac sea is filled up to energy zero, one has to work with a new
representation of the CAR algebra, which means to introduce field opera-
tors for the particles (energy \ 0) and for the holes (energy [ 0). In this
representation the Hamiltonian is positive. There is no need here to enter
into the full theory. It suffices to note that the series in (5.10) can be
resummed such that only decaying exponentials appear. Let sn=(s(1),...,
s(n)) be an n-letter word where each letter is either a or b, s0=sn. Then

log P({A(0) [ a, A(y) [ b})=−C
.

n=1

1
n

C
{sn}

tr 5D
n

j=1
Ps(j)Ks(j), s(j+1)6 , (5.11)
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s(n+1) — s(1), with the following convention

Ka, a=Kb, b=K

Ka, b=e−yH(K−1)

Kb, a=eyHK.

(5.12)

The large y asymptotics is extracted from (5.11).
The spectral representation of e−yH(K−1), resp. eyHK, yields an

integral of the form − >.0 dl e−lyg+(l), resp. >0−. dl elyg−(l), with some
spectral functions g+, g− . For large y the weight concentrates at l=0 and
results in the asymptotics −g(0)/y, resp. g(0)/y. Therefore a summand in
(5.11) decays as y−a, where a is the number of broken bonds, i.e., ...ab...
and ...ba..., in the word sn of length n. The only words with no broken
bonds are either all a’s or all b’s. They sum to

det(1−PaK) det(1−PbK). (5.13)

As to be expected, the Airy process is mixing and far apart events become
independent.

To order y−2 we only allow two broken bonds which for large y leads to

y−2 C
.

m=1
C
.

n=1

1
m+n

OAi, (PaK)m Pa AiPOAi, (PbK)n Pb AiP

=y−2 F
.

0
dl OAi, PaK(el−PaK)−1 Pa AiPOAi, PbK(el−PbK)−1 Pb AiP,

(5.14)

Here OAi, ·AiP means inner product in position space with respect to the
Airy function Ai(u), i.e., for some operator R with integral kernel R(u, v),
OAi, R AiP=> du > dv Ai(u) R(u, v) Ai(v). To compute the two-point
function to leading order in 1/y we integrate the probability measure with
distribution function (5.8) against a and b and insert to leading order from
(5.13), (5.14). Using that det(1−PaK) has a good decay for aQ −. and
OAi, PaK(el−PaK)−1 Pa AiP has a good decay for aQ., one is allowed to
integrate by parts to obtain

OA(0) A(y)P−OA(0)POA(y)P

=
1
y2

F
.

0
dl 5F da det(1−PaK)OAi, PaK(el−PaK)−1 Pa AiP6

2

+O(y−4).
(5.15)

The Airy process is positively correlated and has a slow decay as 1/y2.
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6. CONCLUSIONS

The height statistics of the PNG droplet, for large t and under the
scaling (1.3), are given by the Airy process. By universality such a result
should be valid for any one-dimensional growth model in the KPZ class.
The only condition is that locally the macroscopic shape must have a non-
zero curvature. If the interface is flat on the average, other universal distri-
butions will show up. (2) In such a situation, at present, no information on
the multi-point statistics is available. For example in the PNG droplet we
could lift the restriction that nucleation events are allowed only above the
ground layer [−t, t]. By translation invariance of the dynamics and the
initial condition, h(x, 0)=0, we have Oh(x, t)P=2t for large t and the
process yW t−1/3(h(yt2/3, t)−2t)=h0t (y) is stationary. For fixed y, h0t (y)
converges to the GOE Tracy–Widom distribution. (5, 22) The problem of the
joint distribution of h0t (y1), h

0
t (y2) remains open.

The Airy process contains a wealth of statistical information, which
cannot be resolved easily in Monte-Carlo simulations. In the standard
numerical experiment one merely considers the second moment of the
height differences. It is convenient to subtract the asymptotic mean as
h̄(x, t)=h(x, t)−2`t2−x2. The quantity of interest is then

O(h̄(x, t)− h̄(0, t))2P=Gt(x) (6.1)

for large t. Our main result says that Gt(x) is of scaling form and given by

Gt(x) 4 t2/3g(t−2/3x). (6.2)

The scaling function g can be expressed through the two-point function of
the Airy process as

g(y)=O(A(y)−A(0))2P. (6.3)

For small y, one has

g(y) 4 2 |y|, yQ 0. (6.4)

On the other hand, for large y, A(y) becomes independent from A(0) and

g(y) 4 2a2, |y|Q. (6.5)

with a2 the truncated second moment of q2, a2=Oq22P−Oq2P
2 4 0.81320

numerically. The asymptotics (5.15) says that

g(y) 4 2a2−c |y|−2, |y|Q., (6.6)
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to next order. Because of the inverse operator in (5.15) the positive
constant c cannot be readily evaluated. A differential equation, like the
Painlevé II for the single point distribution, would be helpful.

APPENDIX A: CONTINUOUS SAMPLE PATHS OF THE AIRY

PROCESS

Let tWX(t) be a stochastic process with values in R. By a criterion of
Kolmogorov, cf. ref. 23, Theorem 2.23, if for some constant c

E(|X(t)−X(s)|4) [ c |t−s|2, (A.1)

then tWX(t) is continuous (in fact Hölder continuous with exponent < 14)
with probability one. Since (5.8) provides the joint distribution of A(0),
A(y), (A.1) should be an easy exercise. We did not succeed and rely on a
more indirect argument.

Let the test function f be smooth and of compact support. By the
results of Section 4 we have

t(f, y)=C
j [ 0
f(ha(y)). (A.2)

In the next lemma we will prove that

E((t(f, y)−t(f, yŒ))4) [ cf(y−yŒ)2. (A.3)

Therefore yW t(f, y) is continuous with probability one. Since the vague
topology on locally finite point measures is countably generated, the
trajectory yW;a [ 0 d(ha(y)−u) is continuous in the vague topology with
probability one. The convergence of a sequence of locally finite point mea-
sures in the vague topology is equivalent to the convergence of each
atom. (24) Thus (A.3) implies that yW ha(y) for each a is continuous with
probability one. In particular A(y)=h0(y) is continuous.

Lemma A.1. Let f be smooth and of compact support. Then there
is a constant cf such that

E((t(f, y)−t(f, 0))4) [ cf y2. (A.4)

Proof. As a warm-up, and to fix notation, we first compute the
second moment. We suppress f and set t(f, y)=ty. We take y \ 0. y [ 0
follows from reversal symmetry yW −y and stationarity in y. As short-
hand we define L=K−1. −L is the projection operator onto H \ 0. We
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regard f as a multiplication operator, fk(u)=f(u) k(u), and formally
set fy=eyHfe−yH. By construction, in the expressions below, only the
bounded operators KeyH and e−yHL appear as factors. By the determinan-
tal formula (4.10)

E((ty−t0)2)=2(E(t
2
0)−E(t0ty))

=−2(tr(fKfL)− tr(fKfyL))=−2tr(fK(f−fy) L).
(A.5)

From the spectral representation, one concludes differentiability of any
order in y, y > 0, and up to linear order

E((ty−t0)2)=2y tr(fK[H, f] L)+O(y2)

=2y(tr(fK[H, f] K)− tr(fK[H, f]))+O(y2). (A.6)

For real operators one has tr(AB)=(tr(AB))g=tr(BgAg). Since [H, f]g=
−[H, f], the first summand vanishes and

E((ty−t0)2)=y tr(fK[H, f] L)+O(y2)=y tr(K[f, [H, f]])+O(y2)

=2y tr K(fŒ)2+O(y2). (A.7)

The variance (A.7) implies that E((ha(y)−ha(0))2)=2 |y|+O(y2) for each
a in the limit yQ 0, as to be expected from the construction of the Airy
field.

The fourth moment requires more effort. We have, using stationarity
and reversibility in y,

E((ty−t0)4)=2(E(t
4
0)−4E(t

3
0ty)+3E(t

2
0t
2
y)). (A.8)

We again use the determinant formula (4.10), which most conveniently is
decomposed into cycles. For the fourth moment there are 4! permutations.
They subdivide into (i) four 1-cycles (1 term), (ii) two 1-cycles plus one
2-cycle (6 terms), (iii) two 2-cycles (3 terms), (iv) one 1-cycle plus one
3-cycle (8 terms), and (v) one 4-cycle (6 terms). The sign of the permutation
will be of no significance for the argument.

(i) and (ii) vanish, (iii) is the ‘‘Gaussian’’ term,

(iii)=3E((ty−t0)2)2 [ cfy2 (A.9)
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from (A.7). For (iv) we have a 1-cycle and two 3-cycles in reverse order.
Summing over all such cycles yields

(iv)=12tr(Kf)(− tr(fKfyLfL)+tr(fKfyLfyL)

− tr(fKfKfyL)+tr(fKfyKfyL)). (A.10)

Since tr(fKfyLfL)g=tr fKfyLfyL and tr(fKfKfyL)g=tr fKfyKfyL
the contribution (iv) vanishes.

It remains to study the 4-cycles. For their sum one obtains

(v)=tr(fKfKfK(f−fy) L)−3tr(fKfK(f−fy) KfL)

+tr(fKfK(f−fy) LfL)−3tr(fKfKfL(f−fy) L)

+tr(fKfK(f−fy) LfL)−3tr(fK(f−fy) KfyLfL)

+tr(fKfLfK(f−fy) L)−3tr(fK(f−fy) LfKfyL)

+tr(fK(f−fy) LfKfL)−3tr(fKfyLfK(f−fy) L)

+tr(fK(f−fy) LfLfL)−3tr(fKfyL(f−fy) LfL), (A.11)

where we combined the terms such that the order y is manifest. By the
spectral theorem (A.11) is differentiable to any order in y, y > 0. Thus to
complete the proof it suffices to show that the linear order of (A.11)
vanishes. Since f−fy 4−y[H, f], we obtain

(v)=y tr([H, f](LfKfKfK−3KfLfKfK+2LfLfKfK−3LfKfKfL

−3KfLfLfK−4LfKfLfK+LfLfLfK−3LfLfKfL))+O(y2).
(A.12)

We substitute L=K−1 and use that [H, f]g=−[H, f]. The term with
four K’s reads

−12tr([H, f] KfKfKfK)=0. (A.13)

The term with three K’s reads

−6tr([H, f] fKfKfK+Kf2KfK+KfKf2K+KfKfKf))=0,
(A.14)

since first and fourth summand and second and third summand cancel. The
term with two K’s reads

− tr([H, f](6fKfKf+2Kf3K+3fKf2K+3Kf2Kf))=0, (A.15)
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since the first and second summand vanish and since the third summand
cancels against the fourth one. The term with one K reads, upon adding the
adjoint,

tr([H, f] f3−f3[H, f]−3f[H, f] f2+3f2[H, f] f). (A.16)

At this point the specific structure of H enters. We have [H, f]=
−fœ−2fŒ(d/du). Working out the commutators ensures also that the
last term vanishes. Thus the linear order from the 4-cycles vanishes. The
quadratic order does not vanish, however, and reflects the deviations from
the local Brownian motion statistics. L

APPENDIX B: TRACE CLASS PROPERTIES

As shown in ref. 4, PaK is of trace class. If one establishes that
R=e−yHPbeyHK is of trace class, then each summand in (5.9) is separately
of trace class. In the energy representation R has the kernel

R(lŒ, l)=e−ylŒ F
.

b
dx Ai(x−lŒ) Ai(x−l) elyq(l [ 0). (B.1)

If l [ 0, lŒ \ 0, the integral is bounded uniformly in l, lŒ. If l [ 0, lŒ [ 0,
one uses that Ai(x−lŒ) [ c e−

2
3
|x−lŒ|3/2 for large negative lŒ. Thus the

integral dominates the factor e−lŒy. This implies the bound

|R(lŒ, l)| [ ce−c(|lŒ|+|l|) (B.2)

with suitable constants c, c > 0. Hence R is of trace class.

NOTE ADDED IN PROOF

In their recent preprint (25) Okounkov and Reshetikhin consider the
(1, 1, 1) interface of the three-dimensional Ising model at zero temperature,
which maps onto a domino tiling of a form similar to the Aztec diamond.
They prove that correlations are of determinantal form and compute the
limit shape. Their Theorem 1 is the analogue of our Eq. (3.54).
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